排序算法总结(javascript)

由于一直理不清楚各种不同的排序算法的原理以及他们之间的区别,所以特此写下此文,希望不要在面试问到有关算法的时候一问三不知。

冒泡排序(Bubble Sort)

冒泡排序应该是所有排序算法里面最经典的一种了。记得本科学C语言的时候还学过。

冒泡排序的原理很简单,就是遍历数组中的所有元素,每个元素和其余元素进行大小比较,如果元素的位置与排序方向不符,则交换元素位置。这个算法名字的由来是越小的元素会随着交换的过程慢慢“浮”到数组顶端。

具体算法描述如下:

比较相邻的元素。如果第一个比第二个大,就交换它们两个;
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
针对所有的元素重复以上的步骤,除了最后一个;
重复步骤1~3,直到排序完成。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// 原始冒泡排序算法
function bubbleSort(arr) {
var len = arr.length;
var tmp;
console.time('原始冒泡排序耗时');
for (var i = 0; i < len; i++) {
for (var j = 0; j < len - 1 - i; j++) {
if (arr[j] > arr[j + 1]) {
temp = arr[j + 1]; arr[j + 1] = arr[j]; arr[j] = temp;
}
}
}
console.timeEnd('原始冒泡排序耗时');
return arr;
}

改进冒泡排序1: 设置一标志性变量pos,用于记录每趟排序中最后一次进行交换的位置。由于pos位置之后的记录均已交换到位,故在进行下一趟排序时只要扫描到pos位置即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// 改进后冒泡排序方法1
// 加入冒泡标识位pos
// pos为上一次冒泡位置
function bubbleSort1(arr) {
var i = arr.length - 1; //初始时,最后位置保持不变
console.time('改进后冒泡排序一耗时');
while (i > 0) {
var pos = 0; //每趟开始时,无记录交换
for (var j = 0; j < i; j++) {
if (arr[j] > arr[j + 1]) {
pos = j; //记录交换的位置
var tmp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = tmp;
}
}
i = pos; //为下一趟排序作准备
}
console.timeEnd('改进后冒泡排序一耗时');
return arr;
}

改进冒泡排序2:传统冒泡排序中每一趟排序操作只能找到一个最大值或最小值,我们考虑利用在每趟排序中进行正向和反向两遍冒泡的方法一次可以得到两个最终值(最大者和最小者) , 从而使排序趟数几乎减少了一半。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// 改进后冒泡排序方法2
// 每趟排序中进行正向和反向两遍冒泡
// 一次可以得到两个最终值(最大者和最小者)
function bubbleSort2(arr) {
var low = 0;
var high = arr.length - 1; // 设置变量的初始值
var tmp, j;
console.time('改进后冒泡排序二耗时');
while (low < high) {
for (j = low; j < high; ++j) { // 正向冒泡,找到最大者
if (arr[j] > arr[j + 1]) {
tmp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = tmp;
}
}
--high; // 修改high值, 前移一位
for (j = high; j > low; --j) { // 反向冒泡,找到最小者
if (arr[j] < arr[j - 1]) {
tmp = arr[j]; arr[j] = arr[j - 1]; arr[j - 1] = tmp;
}
}
++low; // 修改low值,后移一位
}
console.timeEnd('改进后冒泡排序二耗时');
return arr;
}

测试代码如下(测试环境为Chrome 61.0.3163.100,如无特殊说明下同):

1
2
3
4
5
// 测试
var arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log(bubbleSort(arr)); // 原始冒泡排序耗时: 0.02880859375ms [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
console.log(bubbleSort1(arr)); // 改进后冒泡排序一耗时: 0.00732421875ms [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
console.log(bubbleSort2(arr)); // 改进后冒泡排序二耗时: 0.01611328125ms [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

当输入的数据已经是正序时T(n) = O(n)

当输入的数据是反序时T(n) = O(n2)

平均情况:T(n) = O(n2)

选择排序(Selection Sort)

选择排序是最符合我直觉的排序方法,同时也是最稳定的排序方法(时间复杂度稳定O(n2)).

选择排序的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

具体算法描述如下:

初始状态:无序区为R[1..n],有序区为空;
第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
n-1趟结束,数组有序化了。
javascript代码实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// 选择排序算法
function selectionSort(arr) {
var len = arr.length;
var minIndex, temp;
console.time('选择排序耗时');
for (var i = 0; i < len - 1; i++) {
minIndex = i;
for (var j = i + 1; j < len; j++) {
if (arr[j] < arr[minIndex]) { // 寻找最小的数
minIndex = j; // 将最小数的索引保存
}
}
temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex] = temp;
}
console.timeEnd('选择排序耗时');
return arr;
}

// 测试
var arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log(selectionSort(arr));
// 选择排序耗时: 0.02490234375ms
// [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

最佳情况:T(n) = O(n2)

最差情况:T(n) = O(n2)

平均情况:T(n) = O(n2)

插入排序(Insertion Sort)

插入排序的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

从第一个元素开始,该元素可以认为已经被排序;
取出下一个元素,在已经排序的元素序列中从后向前扫描;
如果该元素(已排序)大于新元素,将该元素移到下一位置;
重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
将新元素插入到该位置后;
重复步骤2~5。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// 经典插入排序
function insertionSort(array) {
if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
console.time('插入排序耗时');
for (var i = 1; i < array.length; i++) {
var key = array[i];
var j = i - 1;
while (j >= 0 && array[j] > key) {
array[j + 1] = array[j];
j--;
}
array[j + 1] = key;
}
console.timeEnd('插入排序耗时');
return array;
} else {
return 'array is not an Array!';
}
}

改进插入排序: 查找插入位置时使用二分查找的方式

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// 改进后插入排序
// 使用二分法查找插入位置
function binaryInsertionSort(array) {
if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
console.time('二分插入排序耗时');

for (var i = 1; i < array.length; i++) {
var key = array[i], left = 0, right = i - 1;
while (left <= right) {
var middle = parseInt((left + right) / 2);
if (key < array[middle]) {
right = middle - 1;
} else {
left = middle + 1;
}
}
for (var j = i - 1; j >= left; j--) {
array[j + 1] = array[j];
}
array[left] = key;
}
console.timeEnd('二分插入排序耗时');

return array;
} else {
return 'array is not an Array!';
}
}

最佳情况:输入数组按升序排列。T(n) = O(n)

最坏情况:输入数组按降序排列。T(n) = O(n2)

平均情况:T(n) = O(n2)

希尔排序(Shell Sort)

1959年Shell发明;
第一个突破O(n^2)的排序算法;是简单插入排序的改进版;它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。

希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。

先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

先取一个正整数 d1(d1 < n),把全部记录分成 d1 个组,所有距离为 d1 的倍数的记录看成一组,然后在各组内进行插入排序
然后取 d2(d2 < d1)
重复上述分组和排序操作;直到取 di = 1(i >= 1) 位置,即所有记录成为一个组,最后对这个组进行插入排序。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// 希尔排序
function shellSort(arr) {
var len = arr.length,
temp,
gap = 1;
console.time('希尔排序耗时:');
while (gap < len / 5) { // 动态定义间隔序列
gap = gap * 5 + 1;
}
for (gap; gap > 0; gap = Math.floor(gap / 5)) {
for (var i = gap; i < len; i++) {
temp = arr[i];
for (var j = i - gap; j >= 0 && arr[j] > temp; j -= gap) {
arr[j + gap] = arr[j];
}
arr[j + gap] = temp;
}
}
console.timeEnd('希尔排序耗时:');
return arr;
}
var arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log(shellSort(arr)); // [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

最佳情况:T(n) = O(nlog2 n)

最坏情况:T(n) = O(nlog2 n)

平均情况:T(n) =O(nlog n)

归并排序(Merge Sort)

和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

具体算法描述如下:

把 n 个记录看成 n 个长度为 l 的有序子表
进行两两归并使记录关键字有序,得到 n/2 个长度为 2 的有序子表
重复第 2 步直到所有记录归并成一个长度为 n 的有序表为止。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
function mergeSort(arr) {//采用自上而下的递归方法
var len = arr.length;
if (len < 2) {
return arr;
}
var middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle);
return merge(mergeSort(left), mergeSort(right));
}

function merge(left, right) {
var result = [];
console.time('归并排序耗时');
while (left.length && right.length) {
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
}

while (left.length)
result.push(left.shift());

while (right.length)
result.push(right.shift());
console.timeEnd('归并排序耗时');
return result;
}
var arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log(mergeSort(arr));

最佳情况:T(n) = O(n)

最差情况:T(n) = O(nlogn)

平均情况:T(n) = O(nlogn)

快速排序(Quick Sort)

快速排序是图灵奖得主 C. R. A. Hoare 于 1960 年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法 (Divide-and-ConquerMethod)。

分治法的基本思想是:将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解这些子问题,然后将这些子问题的解组合为原问题的解。

快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

利用分治法可将快速排序分为三步:

在数据集之中,选择一个元素作为”基准”(pivot)。
所有小于”基准”的元素,都移到”基准”的左边;所有大于”基准”的元素,都移到”基准”的右边。这个操作称为分区 (partition) 操作,分区操作结束后,基准元素所处的位置就是最终排序后它的位置。
对”基准”左边和右边的两个子集,不断重复第一步和第二步,直到所有子集只剩下一个元素为止。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//方法一
function quickSort(array, left, right) {
console.time('1.快速排序耗时');
if (Object.prototype.toString.call(array).slice(8, -1) === 'Array' && typeof left === 'number' && typeof right === 'number') {
if (left < right) {
var x = array[right], i = left - 1, temp;
for (var j = left; j <= right; j++) {
if (array[j] <= x) {
i++;
temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
quickSort(array, left, i - 1);
quickSort(array, i + 1, right);
}
console.timeEnd('1.快速排序耗时');
return array;
} else {
return 'array is not an Array or left or right is not a number!';
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
//方法二
var quickSort2 = function(arr) {
console.time('2.快速排序耗时');
  if (arr.length <= 1) { return arr; }
  var pivotIndex = Math.floor(arr.length / 2);
  var pivot = arr.splice(pivotIndex, 1)[0];
  var left = [];
  var right = [];
  for (var i = 0; i < arr.length; i++){
    if (arr[i] < pivot) {
      left.push(arr[i]);
    } else {
      right.push(arr[i]);
    }
  }
console.timeEnd('2.快速排序耗时');
  return quickSort2(left).concat([pivot], quickSort2(right));
};

最佳情况:T(n) = O(nlogn)

最差情况:T(n) = O(n2)

平均情况:T(n) = O(nlogn)

堆排序(Heap Sort)

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/*方法说明:堆排序
@param array 待排序数组*/
function heapSort(array) {
console.time('堆排序耗时');
if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
//建堆
var heapSize = array.length, temp;
for (var i = Math.floor(heapSize / 2) - 1; i >= 0; i--) {
heapify(array, i, heapSize);
}

//堆排序
for (var j = heapSize - 1; j >= 1; j--) {
temp = array[0];
array[0] = array[j];
array[j] = temp;
heapify(array, 0, --heapSize);
}
console.timeEnd('堆排序耗时');
return array;
} else {
return 'array is not an Array!';
}
}
/*方法说明:维护堆的性质
@param arr 数组
@param x 数组下标
@param len 堆大小*/
function heapify(arr, x, len) {
if (Object.prototype.toString.call(arr).slice(8, -1) === 'Array' && typeof x === 'number') {
var l = 2 * x + 1, r = 2 * x + 2, largest = x, temp;
if (l < len && arr[l] > arr[largest]) {
largest = l;
}
if (r < len && arr[r] > arr[largest]) {
largest = r;
}
if (largest != x) {
temp = arr[x];
arr[x] = arr[largest];
arr[largest] = temp;
heapify(arr, largest, len);
}
} else {
return 'arr is not an Array or x is not a number!';
}
}

最佳情况:T(n) = O(nlogn)

最差情况:T(n) = O(nlogn)

平均情况:T(n) = O(nlogn)

计数排序(Counting Sort)

具体算法描述如下:

找出待排序的数组中最大和最小的元素;
统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// 计数排序
function countingSort(array) {
var len = array.length,
B = [],
C = [],
min = max = array[0];
console.time('计数排序耗时');
for (var i = 0; i < len; i++) {
min = min <= array[i] ? min : array[i];
max = max >= array[i] ? max : array[i];
C[array[i]] = C[array[i]] ? C[array[i]] + 1 : 1;
}
for (var j = min; j < max; j++) {
C[j + 1] = (C[j + 1] || 0) + (C[j] || 0);
}
for (var k = len - 1; k >= 0; k--) {
B[C[array[k]] - 1] = array[k];
C[array[k]]--;
}
console.timeEnd('计数排序耗时');
return B;
}

最佳情况:T(n) = O(n+k)

最差情况:T(n) = O(n+k)

平均情况:T(n) = O(n+k)

桶排序(Bucket Sort)

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

桶排序 (Bucket sort)或所谓的箱排序的原理是将数组分到有限数量的桶子里,然后对每个桶子再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序),最后将各个桶中的数据有序的合并起来。

排序过程:

假设待排序的一组数统一的分布在一个范围中,并将这一范围划分成几个子范围,也就是桶
将待排序的一组数,分档规入这些子桶,并将桶中的数据进行排序
将各个桶中的数据有序的合并起来

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/*方法说明:桶排序
@param array 数组
@param num 桶的数量*/
function bucketSort(array, num) {
if (array.length <= 1) {
return array;
}
var len = array.length, buckets = [], result = [], min = max = array[0], regex = '/^[1-9]+[0-9]*$/', space, n = 0;
num = num || ((num > 1 && regex.test(num)) ? num : 10);
console.time('桶排序耗时');
for (var i = 1; i < len; i++) {
min = min <= array[i] ? min : array[i];
max = max >= array[i] ? max : array[i];
}
space = (max - min + 1) / num;
for (var j = 0; j < len; j++) {
var index = Math.floor((array[j] - min) / space);
if (buckets[index]) { // 非空桶,插入排序
var k = buckets[index].length - 1;
while (k >= 0 && buckets[index][k] > array[j]) {
buckets[index][k + 1] = buckets[index][k];
k--;
}
buckets[index][k + 1] = array[j];
} else { //空桶,初始化
buckets[index] = [];
buckets[index].push(array[j]);
}
}
while (n < num) {
result = result.concat(buckets[n]);
n++;
}
console.timeEnd('桶排序耗时');
return result;
}

最佳情况:T(n) = O(n+k)

最差情况:T(n) = O(n+k)

平均情况:T(n) = O(n2)

基数排序(Radix Sort)

基数排序也是非比较的排序算法,对每一位进行排序,从最低位开始排序,复杂度为O(kn),为数组长度,k为数组中的数的最大的位数;

基数排序的主要思路是,将所有待比较数值(注意,必须是正整数)统一为同样的数位长度,数位较短的数前面补零. 然后, 从最低位开始, 依次进行一次稳定排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。

具体算法描述如下:

取得数组中的最大数,并取得位数
arr为原始数组,从最低位开始取每个位组成radix数组
对radix进行计数排序(利用计数排序适用于小范围数的特点)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
* 基数排序适用于:
* (1)数据范围较小,建议在小于1000
* (2)每个数值都要大于等于0
* @author xiazdong
* @param arr 待排序数组
* @param maxDigit 最大位数
*/
//LSD Radix Sort

function radixSort(arr, maxDigit) {
var mod = 10;
var dev = 1;
var counter = [];
console.time('基数排序耗时');
for (var i = 0; i < maxDigit; i++ , dev *= 10, mod *= 10) {
for (var j = 0; j < arr.length; j++) {
var bucket = parseInt((arr[j] % mod) / dev);
if (counter[bucket] == null) {
counter[bucket] = [];
}
counter[bucket].push(arr[j]);
}
var pos = 0;
for (var j = 0; j < counter.length; j++) {
var value = null;
if (counter[j] != null) {
while ((value = counter[j].shift()) != null) {
arr[pos++] = value;
}
}
}
}
console.timeEnd('基数排序耗时');
return arr;
}
var arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log(radixSort(arr, 2)); //[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

最佳情况:T(n) = O(n * k)

最差情况:T(n) = O(n * k)

平均情况:T(n) = O(n * k)

基数排序有两种方法:

MSD 从高位开始进行排序
LSD 从低位开始进行排序

参考链接: